Esteroidogenesis pdf

Steroidogenesis in the testis is regulated by a negative feedback mechanism through the hypothalamus-pituitary-testis axis. Recent studies suggest that besides this long-loop regulation, testicular steroidogenesis is also locally regulated by androgen. However, the molecular mechanism behind this additional regulatory pathway has been poorly addressed. In the present study, we demonstrate that liganded androgen receptor (AR) suppresses the transcriptional activity of Nur77 on steroidogenic enzyme gene promoters, affecting testicular steroidogenesis. AR physically interacts and colocalizes with Nur77 in the nucleus in the presence of androgen. AR inhibits Nur77 transactivation by competing mainly with coactivators such as SRC-1 for Nur77 binding. These results suggest that androgen, through binding to AR, directly acts as a signal inhibiting the expression of steroidogenic enzyme genes in Leydig cells, eventually resulting in decreased testicular steroidogenesis. These findings strongly support the hypothesis that androgen acts locally to regulate testicular steroidogenesis, and may provide its action mechanism.

Clinical and experimental studies are described on the effects of a gonadotropin-releasing hormone (GnRH) agonist (A) and antagonist (Ant.) on testicular endocrine function. Testicular effects of long-term gonadotropin suppression by GnRH-A were assessed during treatment of prostatic cancer patients. The testis tissue removed after 6 months of A treatment had less than 5% of the testosterone(T)-producing capacity in comparison to testis tissue removed from untreated control patients. However, the LH receptors (R) and responsiveness of T output to LH stimulation in vitro were unchanged. FSH-R decreased by 70%. Hence, despite suppression of gonadotropins and testicular androgen production during long-term GnRH-A treatment the responsiveness to exogenous gonadotropins is maintained. The testicular effects of a gonadotropin suppression induced with GnRH-Ant. and testicular GnRH-R blockade were studied in rats. Besides decreases of gonadotropins and testicular T, systemic Ant. treatment decreased testicular Prl-R, but had no effect on LH-R or FSH-R. Bromocriptine-induced hypoprolactinemia, in contrast, decreased LH-R but had no effect on Prl-R. The results indicate reciprocal regulation of LH-R and Prl-R, and that testicular steroidogenesis and LH-R are under differential regulation, the former by LH, the latter by Prl. In another study, testicular GnRH-R, and consequently the action of a putative testicular GnRH-like factor, were blocked by unilateral intratesticular infusion of Ant. (1 week, Alzet osmotic pumps). The treatment resulted in 90% occupancy of testicular GnRH-R in the Ant.-infused testes, and this was associated with decreased levels of R for LH, FSH and Prl, and of T. The results indicated that the testicular GnRH-R have a physiological function in subtle stimulation of Leydig cell functions.

Esteroidogenesis pdf

esteroidogenesis pdf


esteroidogenesis pdfesteroidogenesis pdfesteroidogenesis pdfesteroidogenesis pdfesteroidogenesis pdf